metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A one-dimensional mixed-anion lead(II) coordination polymer: *catena*poly[[(1,10-phenanthroline)lead(II)]- μ -benzoato- μ -nitrato-[(1,10-phenanthroline)lead(II)]-di- μ -benzoato]

Long-Guan Zhu

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China Correspondence e-mail: chezlg@zju.edu.cn

Received 10 July 2006 Accepted 2 August 2006 Online 23 August 2006

In the title polymeric compound, $[Pb_2(C_7H_5O_2)_3(NO_3)-(C_{12}H_8N_2)_2]_n$, both independent Pb atoms adopt an eightcoordinate geometry formed by one nitrate, three benzoate and one 1,10-phenanthroline ligand. The one-dimensional polymer consists of dimeric $[Pb_2(C_7H_5O_2)_3(NO_3)(C_{12}H_8N_2)_2]$ units, in which all nitrate and benzoate ligands act in a bridging-chelating coordination mode.

Comment

4-Carboxybenzeneboronic acid (Hcbba) has so far not been reported to take part in metal coordination compounds, and only a few organic complexes of Hcbba have been documented in the Cambridge Structural Database (CSD; May 2006 update; Allen, 2002). Zhu & Hu (2006) describe how this ligand can be converted into a benzoate ligand under hydrothermal conditions. In order to understand the coordination chemistry of Hcbba with heavy metal ions, the Pb²⁺ ion was selected for exploring the assembly of novel structures. The Pb²⁺ ion can exhibit a variety of coordination modes and possesses a stereochemically active lone pair of electrons, which is important for structural assembly, electron-charge transfer, and physical and chemical properties (Hancock et al., 2004; Nordell et al., 2004; Esteban-Gomez et al., 2005; Panda et al., 2004). Moreover, removing this toxic metal ion through the formation of insoluble complexes is a field of increasing importance (Kurtarun et al., 2005; Magyar et al., 2005). Therefore, the Pb²⁺/Hcbba/1,10-phenanthroline system was investigated by hydrothermal synthesis and the mixed-anion coordination polymer *catena*-poly[[(1,10-phenanthroline)lead(II)]-µ-nitrato-µ-benzoato-[(1,10-phenanthroline)lead(II)]di- μ -benzoato], (I), which is reported here, was obtained.

The structure consists of a one-dimensional chain in which dimeric units formulated as $[Pb_2(NO_3)(ba)_3(phen)_2]$ (ba is

benzoate and phen is 1,10-phenanthroline) are linked by benzoate bridges. In the dimeric unit, each of the two independent Pb atoms is eight-coordinated by one nitrate, three benzoate and one 1,10-phenanthroline ligand in a PbN₂O₆ chromophore (Fig. 1 and Table 1). However, these two Pb atoms in fact adopt somewhat different coordination environments, i.e. atom Pb1 is coordinated by two N-atom donors from one 1,10-phenanthroline ligand, five O atoms from three benzoate ligands and one O atom from one nitrate ligand, while atom Pb2 is coordinated by two N donors from one 1,10phenanthroline ligand, four O atoms from three benzoate ligands and two O atoms from one nitrate ligand. Three fourmembered Pb₂O₂ rings (where usually weak Pb...Pb interactions build up) are formed within (and between) dimeric units. There are a variety of Pb...Pb separation distances: Pb1...Pb2, bridged by both nitrate and benzoate ligands, is 4.7420 (4) Å, which is longer than that in *catena*-poly-[tetraaquabis(μ_2 -nitrato)bis(μ_6 -pyrazole-3,5-dicarboxylato)trilead(II)] [4.425(1)] Å; Bentiss et al., 2004]. On the other hand, the Pb1...Pb1 and Pb2...Pb2 separations, bridged by benzoate ligands between dimeric units, are 4.2639 (5) and 4.6083 (6) Å, respectively. The Pb \cdots Pb separation in the three Pb₂O₂ units is longer than the commonly accepted limit for a weak interaction (4.10 Å; Magyar et al., 2005; Morsali & Mahjoub, 2004a), suggesting that the number and type of ligands present in (I) may not favour the $Pb \cdot \cdot \cdot Pb$ interaction in the Pb₂O₂ loops.

The Pb1-N bonds are slightly longer than the Pb2-N bonds, but all are in the normal range. The chelating Pb1-O (except Pb1-O8) distances are significantly shorter than those of Pb2-O. Such coordination geometries around Pb atoms indicate that the lone pair of electrons on atom Pb1 is inactive, while that on Pb2 is active; a very similar case is found in {[Pb₃{N(CH₂COO)₂}₃]₂(H₂O)₅}_n (Chow & Mak, 1993). Oddly, only two Pb^{II}-benzoate complexes can be found in the CSD, and the carboxylates in these two complexes act in a chelating mode (Yonemura *et al.*, 1997; Hamilton *et al.*, 2004) and with rather similar Pb-O(COO) bond lengths, in contrast to the benzoate ligands in (I), which are converted from 4-carboxybenzeneboronic acid and adopt a bridging-chelating mode with a broad span of Pb-O coordination distances (Table 1). The nitrate anion is a versatile ligand, which may coordinate to metal atoms using one, two or three O atoms. In the present case, it acts as a two-atom chelate to Pb2, while also bridging the dimer (Fig. 1), a situation that is rare in lead(II) complexes, and only two examples, *viz*. tetrakis(1,2-ethylenediamine)-(μ_2 -nitrato- $\kappa^3 O:O,O'$)(μ_2 -nitrato- $\kappa^2 O:O'$)dilead(II) dinitrate and bis(μ_2 -nitrato)(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)(nitrato)lead(II), have been reported (Harrowfield, Miyamae, Skelton *et al.*, 1996; Harrowfield, Miyamae, Shand *et al.*, 1996). The co-existence of both nitrate and carboxylate bridges is also interesting, the former acting

Figure 1

Part of the polymeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are not shown for clarity. [Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 2.]

Figure 2

A view of the one-dimensional chain of (I). H atoms are not shown for clarity.

as a dimeric linker, while the latter extend these dimeric units into one-dimensional chains (Fig. 2). Only one other example containing both types of bridges has been previously reported (Bentiss *et al.*, 2004).

In general, lone-pair activity of lead(II) and π - π stacking interactions can play a significant role in the structural assembly of the solid state (Morsali & Mahjoub, 2004*b*). Both factors can be found in the title complex. The former has already been discussed above; regarding the latter, abundant ba-ba, ba-phen and phen-phen stacking interactions occur in neighbouring chains, with a centroid-to-centroid distance range of 3.544 (5)-3.885 (5) Å. These π - π interactions are not perfect face-to-face contacts but rather correspond to the offset type.

Experimental

A mixture of lead(II) nitrate (0.165 g, 0.49 mmol), 4-carboxybenzeneboronic acid (0.079 g, 0.48 mmol), 1,10-phenanthroline monohydrate (0.090 g, 0.45 mmol) and water (15 ml) was sealed in a 30 ml Teflon-lined stainless steel autoclave and heated at 423 K for 4 d. After cooling of the autoclave, a solution with some powdered solid was obtained, and this residue was filtered off. The filtrate was allowed to evaporate and, after one week, pale-yellow crystals in the form of blocks were obtained by filtration.

Crystal data

 $\begin{array}{ll} [\mathrm{Pb}_2(C_7\mathrm{H}_5\mathrm{O}_2)_3(\mathrm{NO}_3)(\mathrm{C}_{12}\mathrm{H}_8\mathrm{N}_2)_2] & Z = 4 \\ M_r = 1200.13 & D_x = 1.975 \ \mathrm{Mg \ m^{-3}} \\ \mathrm{Monoclinic}, \ P2_1/c & \mathrm{Mo \ K\alpha \ radiation} \\ a = 17.2481 \ (10) \ \mathrm{\AA} & \mu = 8.40 \ \mathrm{mm^{-1}} \\ b = 20.6393 \ (12) \ \mathrm{\AA} & T = 295 \ (2) \ \mathrm{K} \\ c = 11.5549 \ (6) \ \mathrm{\AA} & \mathrm{Block, \ pale \ yellow} \\ \beta = 101.167 \ (1)^\circ & 0.13 \times 0.09 \times 0.08 \ \mathrm{mm} \\ V = 4035.5 \ (4) \ \mathrm{\AA}^3 \end{array}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\min} = 0.417, T_{\max} = 0.521$

Refinement

Refinement on F^2 w = 1/[$R[F^2 > 2\sigma(F^2)] = 0.037$ +4 $wR(F^2) = 0.093$ whenS = 1.02 $(\Delta/\sigma)_{\rm m}$ 7182 reflections $\Delta\rho_{\rm max}$ 550 parameters $\Delta\rho_{\rm min}$ H-atom parameters constrained

20990 measured reflections 7182 independent reflections 5090 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$ $\theta_{\text{max}} = 25.1^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 \\ &+ 4.7224P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.002 \\ \Delta\rho_{max} = 2.23 \ e \ {\rm \AA}^{-3} \\ \Delta\rho_{min} = -0.75 \ e \ {\rm \AA}^{-3} \end{split}$$

Table 1Selected bond lengths (Å).

Pb1-O2	2.363 (5)	Pb2-N3	2.454 (6)
Pb1-O3	2.531 (5)	Pb2-O6	2.470 (5)
Pb1-N2	2.585 (5)	Pb2-N4	2.497 (6)
Pb1-N1	2.666 (6)	Pb2-O5 ⁱⁱ	2.720 (5)
Pb1-O4	2.677 (5)	Pb2-O1	2.793 (5)
Pb1-O1	2.802 (5)	Pb2-O7	2.802 (6)
Pb1-O8	2.929 (6)	Pb2-O8	2.827 (6)
Pb1-O3 ⁱ	3.019 (5)	Pb2-O5	2.837 (5)
			()

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 2.

metal-organic compounds

All H atoms were placed in calculated positions and treated as riding, with C-H distances of 0.93 Å and $U_{\rm iso}({\rm H})$ values of $1.2U_{\rm eq}({\rm C})$. The highest peak in the final difference Fourier map lies 0.99 Å from atom Pb2.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 50073019).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BG3015). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bentiss, F., Roussel, P., Drache, M., Conflant, P., Cagrenee, M. & Wignacourt, J. P. (2004). J. Mol. Struct. 707, 63–68.
- Bruker (2002). SMART (Version 5.618), SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.

Chow, M. Y. & Mak, T. C. W. (1993). Chin. J. Struct. Chem. 12, 65-71.

- Esteban-Gomez, D., Ferreiros, R., Fernandez-Martinez, S., Avecilla, F., Plataslglesias, C., de Blas, A. & Rodriguez-Blas, T. (2005). *Inorg. Chem.* 44, 5428– 5436.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hamilton, B. H., Kelly, K. A., Wagler, T. A., Espe, M. P. & Ziegler, C. J. (2004). *Inorg. Chem.* 43, 50–56.
- Hancock, R. D., Reibenspies, J. H. & Maumela, H. (2004). Inorg. Chem. 43, 2981–2987.
- Harrowfield, J. M., Miyamae, H., Shand, T. M., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1051–1066.
- Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1029–1042.
- Kurtarun, R., Yildirim, L. T., Azaz, A. D., Namli, H. & Atakol, O. (2005). J. Inorg. Biochem. 99, 1937–1944.
- Magyar, J. S., Weng, T. C., Stern, C. M., Dye, D. F., Rous, B. W., Payne, J. C., Bridgewater, B. M., Mijovilovich, A., Parkin, G., Zaleski, J. M., Penner-Hahn, J. E. & Godwin, H. A. (2005). J. Am. Chem. Soc. 127, 9495–9505.
- Morsali, A. & Mahjoub, A. R. (2004a). Helv. Chim. Acta, 87, 2717-2722.
- Morsali, A. & Mahjoub, A. R. (2004b). Polyhedron, 23, 2427-2436.
- Nordell, K. J., Schultz, K. N., Higgins, K. A. & Smith, M. D. (2004). Polyhedron, 23, 2161–2167.
- Panda, S., Singh, H. B. & Butcher, R. J. (2004). Inorg. Chem. 43, 8532-8537.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Yonemura, M., Matsumura, Y., Furutachi, H., Ohta, M., Okawa, H. & Fenton, D. E. (1997). *Inorg. Chem.* 36, 2711–2717.
- Zhu, L.-G. & Hu, M.-L. (2006). Acta Cryst. E62, m653-m655.